Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.474
Filtrar
1.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564658

RESUMO

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Assuntos
Globulinas , Hypocreales , Proteínas de Soja , Trichoderma , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Emulsões/metabolismo , Globulinas/metabolismo , Tirosina/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542347

RESUMO

Tyrosinase serves as the key enzyme in melanin biosynthesis, catalyzing the initial steps of the pathway, the hydroxylation of the amino acid L-tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA), followed by the subsequent oxidation of L-DOPA into dopaquinone (DQ), and it facilitates the conversion of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into 5,6-indolequinone-2-carboxylic acid (IQCA) and 5,6-dihydroxy indole (DHI) into indolequinone (IQ). Despite its versatile substrate capabilities, the precise mechanism underlying tyrosinase's multi-substrate activity remains unclear. Previously, we expressed, purified, and characterized the recombinant intra-melanosomal domain of human tyrosinase (rTyr). Here, we demonstrate that rTyr mimics native human tyrosinase's catalytic activities in vitro and in silico. Molecular docking and molecular dynamics (MD) simulations, based on rTyr's homology model, reveal variable durability and binding preferences among tyrosinase substrates and products. Analysis of root mean square deviation (RMSD) highlights the significance of conserved residues (E203, K334, F347, and V377), which exhibit flexibility during the ligands' binding. Additionally, in silico analysis demonstrated that the OCA1B-related P406L mutation in tyrosinase substantially influences substrate binding, as evidenced by the decreased number of stable ligand conformations. This correlation underscores the mutation's impact on substrate docking, which aligns with the observed reduction in rTyr activity. Our study highlights how rTyr dynamically adjusts its structure to accommodate diverse substrates and suggests a way to modulate rTyr ligand plasticity.


Assuntos
Indolquinonas , Monofenol Mono-Oxigenase , Humanos , Monofenol Mono-Oxigenase/metabolismo , Melaninas/metabolismo , Levodopa , Simulação de Acoplamento Molecular , Ligantes
3.
Bioorg Chem ; 146: 107298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503025

RESUMO

Tyrosinase (TYR) is a copper-containing oxidase that affects the synthesis of melanin in the human body, which is regulate to the pigmentation of the skin. Nevertheless, abnormal expression of TYR can lead to albinism, vitiligo and other skin diseases. Excessive accumulation of TYR is a marker of melanoma cancer and an important factor leading to pigmentation during wound healing, freckles and browning of fruits and vegetables. Efficient tracking of TYR is of significance for studying its pathophysiological mechanism. Herein, we synthesized a benzindole-based fluorescent probe Pro-OH to detect TYR in living cells and zebrafish. The probe displayed a high selectivity and sensitivity in distinguishing TYR from other analytes with the low detection limit of 1.024 U/mL. Importantly, Pro-OH was successfully used to imagine TYR at the wound site of broken tail of zebrafish.


Assuntos
Melanoma , Monofenol Mono-Oxigenase , Animais , Humanos , Monofenol Mono-Oxigenase/metabolismo , Peixe-Zebra/metabolismo , Corantes Fluorescentes , Fluorescência , Melanoma/metabolismo
4.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481807

RESUMO

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hiperpigmentação , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Lipopolissacarídeos/toxicidade , Melanócitos/metabolismo , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473981

RESUMO

As the aging population increases, so has interest among emerging seniors in anti-aging ingredients that enhance functionality by incorporating fermentation with natural materials. In this study, fermentation conditions for enhancing the functionality of Hermetia illucens larvae oil (HIO) were established, and its anti-aging potential was evaluated. First, the lipase activity and amount of lipid degradation products of the fermentation strains were measured in order to select Lactobacillus gasseri and Lactiplantibacillus plantarum as the strains with high fermentation ability. A fermentation period of 28 d and a fermentation method that uses only the strain culture medium were established by evaluating the fermentation degree after fermenting HIO with the selected strains. The whitening functionality test results of fermented HIO (FHIO) showed an increase of approximately 20% in extracellular tyrosinase inhibition activity compared with HIO. Additionally, within melanocytes, there was a 12% increase in tyrosinase inhibition activity and a 26% enhancement in melanin production inhibition ability. For wrinkle-improving functionality, it was observed that, for fibroblasts, there was a 10% increase in collagen production, a 9% increase in collagenase inhibition ability, and an 8% increase in elastase inhibition ability. Therefore, FHIO was confirmed to be an effective cosmetic raw material, with high functionality for anti-aging within the senior generation. This is achieved through increased whitening and wrinkle-improving functionality.


Assuntos
Cosméticos , Dípteros , Envelhecimento da Pele , Animais , Larva/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Envelhecimento , Cosméticos/farmacologia
6.
J Am Chem Soc ; 146(11): 7515-7523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445591

RESUMO

Characterizing the protein constituents of a specific organelle and protein neighbors of a protein of interest (POI) is essential for understanding the function and state of the organelle and protein networks associated with the POI. Proximity labeling (PL) has emerged as a promising technology for specific and efficient spatial proteomics. Nevertheless, most enzymes adopted for PL still have limitations: APEX requires cytotoxic H2O2 for activation and thus is poor in biocompatibility for in vivo application, BioID shows insufficient labeling kinetics, and TurboID suffers from high background biotinylation. Here, we introduce a bacterial tyrosinase (BmTyr) as a new PL enzyme suitable for H2O2-free, fast (≤10 min in living cells), and low-background protein tagging. BmTyr is genetically encodable and enables subcellular-resolved PL and proteomics in living cells. We further designed a strategy of ligand-tethered BmTyr for in vivo PL, which unveiled the surrounding proteome of a neurotransmitter receptor (Grm1 and Drd2) in its resident synapse in a live mouse brain. Overall, BmTyr is one promising enzyme that can improve and expand PL-based applications and discoveries.


Assuntos
Peróxido de Hidrogênio , Monofenol Mono-Oxigenase , Animais , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Peróxido de Hidrogênio/metabolismo , Organelas/metabolismo , Proteoma/metabolismo , Biotinilação
7.
Biochem Biophys Res Commun ; 707: 149785, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38503150

RESUMO

Melanoma, originating from melanocytes, is a highly aggressive tumor. Tyrosinase is involved in melanin production in melanocytes, and its overexpression is noted in malignant melanomas. However, the role of tyrosinase in melanomas remains unclear. Therefore, this study aimed to evaluate the potential functions of tyrosinase in the human melanoma cell line A375. The expression level of tyrosinase in A375 cells was undetectable. However, markedly increased expression level was observed in the mouse melanoma cell line B16F10 and the human melanoma cell line WM266-4. Subsequently, we investigated the effect of ectopic tyrosinase expression on A375 cell motility using wound-healing assay. The overexpression of tyrosinase resulted in enhanced cell migration in both stable and transient tyrosinase expression cells. The levels of filamentous actin were decreased in tyrosinase-expressing A375 cells, suggesting that tyrosinase regulates cell motility by modulating actin polymerization. Histidine residues in tyrosinase are important for its enzymatic activity for synthesizing melanin. Substitution of these histidine residues to alanine residues mitigated the promotion of tyrosinase-induced A375 cell metastasis. Furthermore, melanin treatment enhanced A375 cell metastasis and phosphorylation of Cofilin. Thus, our findings suggest that tyrosinase increases the migration of A375 cells by regulating actin polymerization through its enzymatic activity.


Assuntos
Melaninas , Melanoma Experimental , Animais , Camundongos , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxigenases de Função Mista/metabolismo , Actinas/metabolismo , Histidina/metabolismo , Melanoma Experimental/patologia , Linhagem Celular Tumoral , Melanócitos/metabolismo
8.
Int J Biol Macromol ; 264(Pt 1): 130503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428783

RESUMO

Mannose-binding lectin plays an essential role in bacteria or virus-triggered immune response in mammals. Previous proteomic data revealed that in Eriocheir sinensis, the mannose-binding protein was differentially expressed after Spiroplasma eriocheiris infection. However, the function of mannose-binding protein against pathogen infection in invertebrates is poorly understood. In this study, a crab mannose-binding protein (EsMBP) was characterized and enhanced the host resistance to S. eriocheiris infection. The application of recombinant C-type carbohydrate recognition domain (CTLD) of EsMBP led to increased crab survival and decreased S. eriocheiris load in hemocytes. Meanwhile, the overexpression of CTLD of EsMBP in Raw264.7 cells inhibited S. eriocheiris intracellular replication. In contrast, depletion of EsMBP by RNA interference or antibody neutralization attenuated phenoloxidase activity and hemocyte phagocytosis, rendering host more susceptible to S. eriocheiris infection. Furthermore, miR-381-5p in hemocytes suppressed EsMBP expression and negatively regulated phenoloxidase activity to exacerbate S. eriocheiris invasion of hemocytes. Taken together, our findings revealed that crab mannose-binding protein was involved in host defense against S. eriocheiris infection and targeted by miR-381-5p, providing further insights into the control of S. eriocheiris spread in crabs.


Assuntos
Braquiúros , Catecol Oxidase , Precursores Enzimáticos , Lectina de Ligação a Manose , MicroRNAs , Spiroplasma , Animais , Lectina de Ligação a Manose/metabolismo , Proteômica , Monofenol Mono-Oxigenase/metabolismo , Fagocitose , MicroRNAs/genética , MicroRNAs/metabolismo , Hemócitos/metabolismo , Mamíferos/genética
9.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408981

RESUMO

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Assuntos
Benzoquinonas , Melaninas , Polyporales , Ubiquinona , Animais , Humanos , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Melaninas/metabolismo , Peixe-Zebra/metabolismo , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/metabolismo , Proteína Beclina-1/metabolismo , Melanócitos/metabolismo , Queratinócitos/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
10.
Acta Biomater ; 177: 203-215, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354874

RESUMO

The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Gelatina , Hidrogéis/farmacologia , Hidrogéis/química , Adenocarcinoma/patologia , Monofenol Mono-Oxigenase/metabolismo , Carcinoma Ductal Pancreático/patologia , Norbornanos/química , Compostos de Sulfidrila/química , Ácidos Borônicos , Microambiente Tumoral
11.
Phytomedicine ; 126: 155442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394730

RESUMO

BACKGROUND: The pursuit for safe and efficacious skin-whitening agents has prompted a dedicated exploration of plant-derived compounds. Notably, Tagetes erecta L. flowers have been used as a medicinal extract and possessed in vitro mushroom tyrosinase activity. However, whether polyphenol-enriched fraction extracted from T. erecta L. flowers (TE) regulates melanogenesis within cellular and animal models has not yet been investigated. PURPOSE: This study aimed to investigate the effect of TE as a prospective inhibitor of melanogenesis. METHODS: Through advanced UPLC-QTof/MS analysis, the components of TE were analyzed. Anti-melanogenic effects of TE were evaluated in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring cell viability assay, extracellular and intracellular melanin biosynthesis, cyclic adenosine monophosphate (cAMP) production, and melanogenesis-related gene and protein expression. Zebrafish larvae were employed for in vivo studies, assessing both heart rate and melanogenesis. Furthermore, molecular docking analyses were employed to predict the interaction between TE components and the melanocortin 1 receptor (MC1R). Direct binding activity of TE components to MC1R was compared with [Nle4, d-Phe7]-MSH (NDP-MSH). RESULTS: TE was found to contain significant phenolic compounds such as patulitrin, quercetagetin, kaempferol, patuletin, and isorhamnetin. This study revealed that TE effectively inhibits melanin biosynthesis in both in vitro and in vivo models. This inhibition was attributed to interference of TE with the cAMP-cAMP response element-binding protein (CREB)-microphthalmia-associated transcription factor (MITF)-tyrosinase pathway, which plays a pivotal role in regulating melanogenesis. Importantly, TE exhibited the remarkable ability to curtail α-MSH-induced melanogenesis in zebrafish larvae without impacting heart rates. Molecular docking analyses predicted that the components of TE possibly interact with the melanocortin 1 receptor, suggesting their role as potential inhibitors of melanin biosynthesis. However, through the direct binding activity compared with NDP-MSH, any TE components did not directly bind to MC1R, suggesting that TE inhibits α-MSH-induced melanogenesis by inhibiting the cAMP-mediated intracellular signaling pathway. The assessment of anti-melanogenic activity, conducted both in vitro and in vivo, revealed that patulitrin and patuletin exhibited significant inhibitory effects on melanin formation, highlighting their potency as major contributors. DISCUSSION: This investigation demonstrated the considerable potential of TE as a natural remedy endowed with remarkable anti-melanogenic properties. The demonstrated capacity of TE to attenuate melanin production by modulating the cAMP-CREB-MITF-tyrosinase pathway underscores its central role in management of disorders associated with excessive pigmentation. Importantly, the implications of these findings extend to the cosmetics industry, where TE emerges as a prospective and valuable ingredient for the formulation of skin-whitening products. The elucidated interactions between TE components and MC1R not only provide insight into a potential mechanism of action but also elevate the significance of this study. In summary, this study not only contributes to our comprehension of pigmentation-related conditions but also firmly establishes TE as a secure and natural strategy for the regulation of melanin production. The innovative aspects of TE propel it into the forefront of potential interventions, marking a noteworthy advancement in the pursuit of effective and safe solutions for pigmentation disorders.


Assuntos
Melanoma Experimental , Tagetes , Animais , Melaninas , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Peixe-Zebra/metabolismo , Tagetes/metabolismo , 60451 , Polifenóis/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo
12.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396889

RESUMO

A potential strain, Paenibacillus sp. JNUCC32, was isolated and subjected to whole-genome sequencing. Genome functional annotation revealed its active metabolic capabilities. This study aimed to investigate the pivotal secondary metabolites in the biological system. Fermentation and extraction were performed, resulting in the isolation of seven known compounds: tryptophol (1), 3-(4-hydroxyphenyl)propionic acid (2), ferulic acid (3), maculosin (4), brevianamide F (5), indole-3-acetic acid (6), and butyric acid (7). Tryptophol exhibited favorable pharmacokinetic properties and demonstrated certain tyrosinase inhibitory activity (IC50 = 999 µM). For further analysis of its inhibition mechanism through molecular docking and molecular dynamics (MD) simulation, tryptophol formed three hydrogen bonds and a pro-Michaelis complex with tyrosinase (binding energy = -5.3 kcal/mol). The MD simulation indicated favorable stability for the tryptophol-mushroom tyrosinase complex, primarily governed by hydrogen bond interactions. The crucial residues VAL-283 and HIS-263 in the docking were also validated. This study suggests tryptophol as a potential candidate for antibrowning agents and dermatological research.


Assuntos
Álcoois , Indóis , Simulação de Dinâmica Molecular , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Inibidores Enzimáticos/farmacologia
13.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398609

RESUMO

Polygonum cuspidatum (PC) extract has been listed in the "Catalog of Used Cosmetic Ingredients (2021 Edition)", which can inhibit melanogenesis, thus exerting a whitening effect, and has been widely used in cosmetics. However, there are currently no quality standards for PC extract used in cosmetics, and the bioactive components associated with anti-melanogenesis remain unclear. In view of this, the present study was the first to investigate the spectrum-effect relationship between fingerprints of PC extract and melanogenesis inhibition. Ten batches of PC extract fingerprints were established by HPLC. Pearson's correlation analysis, gray correlation analysis (GRA) and orthogonal partial least squares regression analysis (OPLSR) were used to screen out resveratrol, emodin and physcion as the main whitening active ingredients using the inhibition of tyrosinase in B16F10 cells as the pharmacological index. Then, the melanogenesis inhibitory effects of the above three components were verified by tyrosinase inhibition and a melanin content assay in B16F10 cells. The interaction between small molecules and proteins was investigated by the molecular docking method, and it was confirmed by quantitative real-time PCR (qRT-PCR) that resveratrol, emodin and physcion significantly down-regulated the transcript levels of melanogenesis-related factors. In conclusion, this study established a general model combining HPLC fingerprinting and melanogenesis inhibition and also analyzed the spectrum-effect relationship of PC extract, which provided theoretical support for the quality control of PC extract in whitening cosmetics.


Assuntos
Emodina , Emodina/análogos & derivados , Fallopia japonica , Melanoma Experimental , Animais , Monofenol Mono-Oxigenase/metabolismo , 60451 , Emodina/farmacologia , Simulação de Acoplamento Molecular , Resveratrol/farmacologia , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral
14.
Mar Drugs ; 22(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38393043

RESUMO

Although melanin protects against ultraviolet radiation, its overproduction causes freckles and senile lentigines. Recently, various biological effects of metabolites derived from marine microorganisms have been highlighted due to their potential for biological and pharmacological applications. In this study, we discovered the anti-melanogenic effect of Bacillus sp. APmarine135 and verified the skin-whitening effect. Fractions of APmarine135 showed the melanin synthesis inhibition effect in B16 melanoma cells, and 2,4,6-triphenyl-1-hexene was identified as an active compound. The melanogenic capacity of 2,4,6-triphenyl-1-hexene (1) was investigated by assessing the intracellular melanin content in B16 cells. Treatment with 5 ppm of 2,4,6-triphenyl-1-hexene (1) for 72 h suppressed the α-melanocyte-stimulating hormone (α-MSH)-induced intracellular melanin increase to the same level as in the untreated control group. Additionally, 2,4,6-triphenyl-1-hexene (1) treatment suppressed the activity of tyrosinase, the rate-limiting enzyme for melanogenesis. Moreover, 2,4,6-triphenyl-1-hexene (1) treatment downregulated tyrosinase, Tyrp-1, and Tyrp-2 expression by inhibiting the microphthalmia-associated transcription factor (MITF). Furthermore, 2,4,6-triphenyl-1-hexene (1) treatment decreased the melanin content in the three-dimensional (3D) human-pigmented epidermis model MelanoDerm and exerted skin-whitening effects. Mechanistically, 2,4,6-triphenyl-1-hexene (1) exerted anti-melanogenic effects by suppressing tyrosinase, Tyrp-1, and Tyrp-2 expression and activities via inhibition of the MITF. Collectively, these findings suggest that 2,4,6-triphenyl-1-hexene (1) is a promising anti-melanogenic agent in the cosmetic industry.


Assuntos
Alcenos , Bacillus , Melaninas , Compostos de Terfenil , Humanos , Monofenol Mono-Oxigenase/metabolismo , Bacillus/metabolismo , Raios Ultravioleta/efeitos adversos , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , alfa-MSH/farmacologia
15.
Chem Res Toxicol ; 37(2): 274-284, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38271289

RESUMO

Cutaneous pigmentation is an important phenotypic trait whose regulation, despite recent advances, has yet to be completely elucidated. Melanogenesis, a physiological process of melanin production, is imperative for organism survival as it provides protection against the environmental insults that majorly involve sunlight-induced skin photodamage. However, immoderate melanin synthesis can cause pigmentation disorders associated with a psychosocial impact. In this study, the hypopigmentation effect of (2-methylbutyryl)shikonin, a natural product present in the root extract of Lithospermum erythrorhizon, and the underlying mechanisms responsible for the inhibition of melanin synthesis in α-MSH-stimulated B16F10 cells and C57BL/6J mice was studied. Non-cytotoxic concentrations of (2-methylbutyryl)shikonin significantly repressed cellular tyrosinase activity and melanin synthesis in both in vitro and in vivo models (C57BL/6J mice). (2-Methylbutyryl)shikonin remarkably abolished the protein expression of MITF, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, thereby blocking the production of pigment melanin via modulating the phosphorylation status of MAPK proteins, viz., ERK1/2 and p38. In addition, specific inhibition of ERK1/2 attenuated the inhibitory effects of (2-methylbutyryl)shikonin on melanin synthesis, whereas selective inhibition of p38 augmented the inhibitory effect of BSHK on melanin synthesis. Moreover, topical application of (2-methylbutyryl)shikonin on C57BL/6J mouse tails remarkably induced tail depigmentation. In conclusion, with these findings, we, for the first time, report the hypopigmentation effect of (2-methylbutyryl)shikonin via inhibition of cellular tyrosinase enzyme activity, subsequently ameliorating the melanin production, thereby indicating that (2-methylbutyryl)shikonin is a potential natural therapy for hyperpigmentation disorders.


Assuntos
Hipopigmentação , Melanoma Experimental , Naftoquinonas , Animais , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Regulação para Baixo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Transdução de Sinais , 60451 , Melaninas/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Melanoma Experimental/tratamento farmacológico
16.
Sci Rep ; 14(1): 1540, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233558

RESUMO

A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Agaricales/metabolismo , Relação Dose-Resposta a Droga
17.
Curr Protein Pept Sci ; 25(2): 183-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275092

RESUMO

BACKGROUND: Melasma is a skin hyperpigmentary disorder that develops over time. Genetic factors, oxidative stress, female sex hormones, and UV light may all play a role in the disorder's progression. AIMS: To compare the levels of oxidative stress and tyrosinase activity in melasma patients with healthy volunteers. METHODS: After written consent, 130 patients were enrolled in a case-control study. 65 cases were of melasma disorder, and 65 were served as control. Homogenized skin tissues were taken and used to estimate superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) (antioxidants), malondialdehyde (MDA) and tyrosine hydroxylase (TH). RESULTS: Melasma patients had lower basal levels of systemic antioxidants than healthy subjects. Tyrosinase activity was shown to be greater in lesional skin than in non-lesional skin. In controls, there was a good positive relationship between TH and MDA and an excellent negative relationship between GPx and GSH. In melasma patients, there were significant associations between CAT, GPx, SOD and MDA. CONCLUSIONS: Increased oxidative stress may affect tyrosinase activity and eumelanin synthesis via the anabolic pathway of melanin synthesis, according to our findings. In conclusion, we discovered a negative relationship between antioxidants and tyrosinase activity.


Assuntos
Melanose , Monofenol Mono-Oxigenase , Humanos , Feminino , Monofenol Mono-Oxigenase/metabolismo , Estudos de Casos e Controles , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
18.
Sci Rep ; 14(1): 1823, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245596

RESUMO

In this study, Penaeus monodon were gave basic feed supplemented with three levels of Enterococcus faecium. Then, the expression of non-specific immunity-related genes, and the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (AKP), phenol oxidase (PO) were evaluated. Meanwhile, the disease resistance test and intestinal flora determination were conducted. The results showed that the MDA levels of 2% and 5% E. faecium groups were significantly lower than that of the control group (P < 0.05). While the SOD and T-AOC and ACP and AKP of experimental groups were significantly higher (P < 0.05), the PO of experimental groups were significantly lower than that of the control group (P < 0.05). In addition, the expressions of immunity-related genes (tlr22, dorsal, lysozyme, crustin, imd, and relish) in the 2% and 5% E. faecalis groups were significantly greater than those in the control group (P < 0.05). After P. monodon was challenged with Vibrio parahaemolyticus for 7 days, the average cumulative mortality of P. monodon in the 2% and 5% groups were significantly lower than that in the 0% group (P < 0.05). With the increase of feeding time, the number of effective OTUs in each group showed a downward trend. At the 14th d, Proteobacteria, Bacteroidetes and Firmicutes, the dominant flora in the intestinal tract of P. monodon. In summary, supplied with E. faecium could increase the expression of non-specific immunity-related genes, enhance the immune capacity of P. monodon.


Assuntos
Enterococcus faecium , Microbioma Gastrointestinal , Penaeidae , Animais , Enterococcus faecium/metabolismo , Antioxidantes/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Superóxido Dismutase/metabolismo , Expressão Gênica , Imunidade Inata
19.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38287676

RESUMO

Oculocutaneous albinism (OCA) is characterized by reduced melanin biosynthesis affecting the retina, thus impairing visual function. The disease pathology of OCA is poorly understood at the cellular level due to unavailability of suitable biological model systems. This study aimed to develop a disease-specific in vitro model for OCA type 1A, the most severe form caused by TYR (tyrosinase) gene mutations, using retinal pigment epithelium (RPE) differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs). A comparative study between healthy and OCA1A RPE cells revealed that while healthy RPE cells exhibited timely onest of pigmentation during differentiation, OCA1A RPE cells failed to pigment even after an extended culture period. This observation was validated by ultrastructural studies using electron microscopy, hinting at melanosome-specific defects. Immunocytochemistry demonstrated abnormal expression patterns of melanogenesis-specific protein markers in OCA1A RPE cells, indicating reduced or absence of melanin synthesis. Next, a quantitative assay was performed to confirm the absence of melanin production in OCA1A RPE cells. Tyrosinase assay showed no activity in OCA1A compared with healthy RPE, suggesting non-functionality of TYR, further corroborated by western blot analysis showing complete absence of the protein. Gene expression by RNA sequencing of healthy and OCA1A RPE cells uncovered differential gene expression associated with lens development, visual perception, transmembrane transporter activity, and key signaling pathways. This disease-in-a-dish model of OCA1A provides an excellent platform to understand disease mechanism, identify potential therapeutic targets, and facilitate gene therapy or gene correction.


Assuntos
Albinismo Oculocutâneo , Células-Tronco Pluripotentes Induzidas , Humanos , Melaninas/genética , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Albinismo Oculocutâneo/genética , Albinismo Oculocutâneo/terapia
20.
PLoS One ; 19(1): e0297434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289914

RESUMO

This study aimed to obtain a high yield and purity of Sargassum pallidum polyphenol extracts (SPPE) and study its enzyme activity. Fresh Sargassum pallidum seaweed was selected for optimization of ultrasound-assisted extraction (UAE) conditions and purification conditions using macroporous resin and Sephadex LH20 to obtain SPPE. The SPPE was characterized using UPLC-QTOF-MS/MS and α-amylase, α-glucosidase, tyrosinase, and AchE inhibitory activity were determined. The maximum extraction rate of SPPE was 7.56 mg GAE/g and the polyphenol purity reached 70.5% after macroporous resin and Sephadex LH-20 purification. A total of 50 compounds were identified by UPLC-QTOF-MS/MS. The IC50 values of SPPE were 334.9 µg/mL, 6.290 µg /mL, 0.834 mg /mL and 0.6538 mg /mL for α-amylase, α-glucosidase, tyrosinase and AchE, respectively. Molecular docking technology further revealed the effects of SPPE on the above enzymes. This study provided information on the potential hypoglycemic, whitening and anti-Alzheimer's disease biological activities of SPPE, which had guiding significance for the purification and development of other seaweed polyphenols.


Assuntos
Polifenóis , Sargassum , Polifenóis/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , alfa-Glucosidases/metabolismo , Espectrometria de Massas em Tandem , Globo Pálido , alfa-Amilases/metabolismo , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA